UNSTEADY-STATE SLIP OF A GAS NEAR AN
INFINITE PLANE WITH DIFFUSION-MIRROR
REFLECTION OF MOLECULES
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On the basis of a "two-point™ approximation for the distribution function, an approximate
analytical solution is obtained to the Rayleigh problem describing (for an arbitrary moment
of time) the unsteady-state slip of a rarefied gas near a surface with diffusion-mirror re-
flection of molecules. In the solution of the problem it was postulated that the character-
istic value of the macroscopic velocity of the gas is small in comparison with the speed of
sound. An approximate analogy is established with the propagation of free vibrations in an
electrical line of infinite length. An investigation is made of the limiting transition ¢~ 0 (¢
is the fraction of mirror-reflected particles) in an exact solution of the Boltzmann problem.
It is shown that, with ¢ <1, the rate of slip for any given moment of time is determined
from the hydrodynamic equations of motion. An investigation is made of the nonsingularity
of the limiting transitions {t—~w, g—0; g— 0, t—) with determination of the rate of thermal
slip.

The Rayleigh Problem for a Moving Plane with

Diffusion-Mirror Reflection of Molecules

Let us consider the problem of the unsteady-state motion of a gas, bounded by an infinite plane,
which is suddenly set into uniform motion (parallel with itself) with a constant velocity w. A solution of
this problem within the framework of the theory of a continuous medium has been given in [1, 2]. This un-
steady-state flow was investigated in [3-9] on the basis of the kinetic theory of gases. The present article
considers the case of the pulsed motion of an infinite plane with diffusion-mirror reflection of molecules.
An gpproximate analytical solution is given to the problem which generalizes the solution obtained in [5]
for the case of purely diffusion reflection of molecules.

A scheme of the diffusion-mirror reflection of molecules was also discussed in [3, 6, 9]. In distinc-
tion from the results of these communications, valid in the region of asymptotically small (t/tp<« 1) or
large (t/tf>>1) intervals of time t/t; (t; is the time of free flight), the proposed solution describes the be-
havior of the gas at an arbitrary moment of time* from the start of the motion of the infinite plane (y=0).

We assume that the velocity w of the plane is small in comparison with the speed of sound in the gas.
In this case, the kinetic Boltzmann equation for the distribution function (e, y, t) can be linearized with
respect to the parameter w/ vy, (vyy= V2kTy,/m)

/ot + ¢, dp/oy=2Lg]. (1)

Here ¢ is the correction to the equilibrium function ") for a gas at rest; ¢ ~wvil; f= f{gg)(l +o); vis
the distance along normal to the plane y=0; ¢ is the velocity of a molecule; #[¢]is the linearized collision
integral [10].

*In [3] an interpolation solution was constructed for the range t/tg~ 1. However, using this interpolation
it was not possible to determine the velocity of the gas u(t, y) with t/tf~1 and y>0.
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As the kinetic boundary condition at the wall y=0 we assume that part (1—¢) of the incident molecules
is reflected in a mirror fashion, while the other part (o) is reflected diffusionally with a Maxwellian dis-
tribution at the temperature of the wall Ty. Then for the correction ¢ with y=0 we will have

(p(c!/ > O t, y:;(}):(} - U) (ft(C!/‘ < O? f? y:o) + 26—1;5\: (2)

—1 - —1
where W= W, §; ax = Clyp ;

cx is the projection of the velocity on a direction parallel to the plane y=0.

For an approximate solution of Eq. (1), we use the following approximation of the function ¢ [5]:

(P' =@ (C;/> O) = (15:_ (y) Cum

q}:l - ’

¢ =¢(c;<0) =ap (¥) L (3

The velocity of the gas u and the current of an impulse pyy are connected with the functions af and
ag by the relationships

+ _
(lo ——ﬂo

iVa

U:uv;1=-§7(a()+'Faf); Dxy ==

We multiply (1) by the functions &, & ¢, and, using approximation (3), we average the result in the
space of the velocity ¢. Then for Maxwell molecules [10] we will have

U/t L 9PIaY=0; aP/dv + dU/dY =--P. (4)

Here
T=1/t;, Y=y} 2/, lg=20/pvss, tr=LslVs, P=pey/(}V2Pax).

Substituting (3) into boundary condition (2), we obtain

Uty =0+ @—0) ) 5PEy=0-ow )

To solve the system of equations (4) we use a Laplace transform [11]:

T, 8) = e 5U(Y,vdy; P—|e 5Pdr (6)
0 0
Applying the transform (6) to Eq. (4) and taking account of the initial and boundary conditions, we
obtain .

PLY = 00)= Y > o0)=0), ®

o~ o Va
ot/ (Y = 0) + {2 — o) }/

The solution of the system of equations (7) with the boundary conditions (8), (9) has the form

7 w ST exp (— 0¥
U(Y,S):% VS~ texp( cx})_? :
VFTire—o V +VF

B(y.§) = F— XTI, o YSETD).

VSTi+e—0 ) ZvF
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To determine the inverse transforms of the functions U and 13, i.e., the inversions of the Laplace
transform, we use an integration contour in the complex plane, shown in Fig. 1.

After simple transformations we obtain

_ ) 1

— 5 Cy T2 VT — 22 A 202 (" V1 - 2e % Psin(vVaV 1= 22
U~ 6 l1 Y Zop—oq IR ey Im e 2oty Vi L Z)dz]; (10)

] ' o P
e e T—2) 1 )
— AV T =R eos (Y VTI—22) dz ) 5 e sin (Y V1 — 2)dz
P =ub [: =0 S ST - I/TG (2 —a) T , (11)
Q o .

where § is a Heaviside function {11},
0=0(1—Y), 8z > 0)=1, 8z < 0)==0; ¢* =3 (2 — 0)* — o
With y=0, g=1, formulas {(10), {11) coincide with a solution obtained earlier for the case of a diffu~
sionally reflecting wall [5].

Let us investigate in more detail the dependence U(T,Y =0), P(r, Y=0). For an interval of time much
less than t§(r <« 1), expanding the expressions under the integration sign in (10}, {11) in series in terms of
7, and taking account of the tabulated values of the integrals [12], we will have

o g(2—0)Vm2 .
= =0 VART_ oy,
oo Ve HE—0VEZ+d

U:Zee(r)[

P=wh(r){(0/(2 — 0) V' 72) — (6*/2[(2 — o))/ 72 + o) + 0 (%)),

A comparison with the exact solution of Eq. (1) near the limit 7—0 [9] U(r, Y=0)=(g/ 2) +[c{2~0)/8]T+
0(r%; P=1+0(7), shows that the difference in the value of the velocity U{Y=0, 7} does not exceed 5%, and,
in the value of P, 10%. This exactness can be considerably increased, as is shown in [13] (with o=1, T« 1),
even after the first iteration of the zero approximation (3).

For intervals of time much larger than tg{T>> 1), after an appropriate simplification of formulas (10),
(11), we obtain

Uir,¥ = 0) =10 (r)[1 — 0;% i o(i‘)];

The time required for establishment of steady-state slip T, in a plane with incomplete accomodation
(o<1) is ¢7? times greater than the time T(o=1),

Te!Ty=0-2

To determine the values of the functions U(r, Y=0, o), P(T, Y=0, ¢) in the intermediate range (T ~ 1)
numerical integration of dependences (10), (11) is needed.

The results of calculations (for different values of ¢) are given in Fig. 2 and Fig. 3.

In the region ¢ <« 1, going over in formula (10) to the variable ¢ =z¢~%, we obtain

oo

U(t,Y:O,G):EO(I)[i—zyzjwdg—{—O(o)}.
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Analogy with the Propagation of Free Vibrations

in an Electrical Line of Infinite Length

The differential equations describing the propagation of free vibrations in an electrical line have the
form [14]

LaIidt + aV/idy = — RI; CaV/ot+ ol/dy =GV, (12)

where L is the inductance; C is the capacitance; G is the leakage; R is the ohmic resistance (L, C, G, R
are referred to unit length); I is the strength of the current; V is the voltage.

It can be seen that the systems of equations (4) and (12) coincide if we set L=1, C=1, R=1, C=0,
V=0, I=P.

The initial conditions U=P=0 correspond to an open line at the moment of time t=0, and the bound-
ary conditions (5) and (8), to conditions at the ends of the line. For example, condition (8) corresponds to
the absence of a reflected wave from the end of the line, while the condition (5) V(t, y=0) = e—zgl(t, y=0)
means that the emf of the battery £¢=w is made up of the emf at the start of the line V(y=0) and the voltage

drop in the ohmic resistance Z, (Z‘J = }/gzz")_

Equations (12) can be brought to a single telegraphic equation with respect to V or I {14],
| Vo — VIoy? + VI61=0, (13)

Thus, the solution of the system of equations (4) is equivalent to solution of the telegraphic equation
(14), describing the propagation of free vibrations in an electrical line of finite length.

Unsteady-State Slip near a Surface with Almost

Mirror Reflection (o « 1} of Molecules

In the hydrodynamic solution of the problem of.slip {i.e., with 7>1) the value of the derivative 8P/0t
is small; therefore, Eq. (4) and the boundary condition (6) assume the form

AU/t -+ 0PI0Y =0; U/dY =—P; (14)
oV + @2 — o)V a2 U/Y=ow. (15)

Applying a Laplace transform to relationships (14), (15), analogously to what has gone before we
obtain

U=ow exp (— V 8Y)/Slo + (2 — o)V a2V S].
The inverse transform U can be found from tables [15]
— Y 2 oY 2 2 olfr
U=w{erfc(7—2_:)—exp(l/ - 2_0) exp[n = ] erfc(]/ +Y/2V1:)} (16)

or by direct integration in the complex plane, along the contour illustrated in Fig. 4,

oo oo

268 e cos (Yz) dz 202 S e sin (Y2) dz
U=A—F )= rar =) i@t amn
b

Here 62=¢+¢2.

With ¢— 0, formulas (10) and (17) coincide. Thus, in the regiori of small values of g (g« 1) the so-
lution of Egs. (4) tends toward the hydrodynamic solution. This fact is not the result of chance. We shall
show that at almost the whole mirror surface (g < 1) the slip becomes appreciably different from zero only
under hydrodynamie slip conditions (7> 1).

We multiply Eq. (1) by the function ¢ft, ¢, y) and integrate over all the variables. Taking account of
the initial and boundary conditions for ¢, we obtain
co o T )
f G dy— Ydy {Gempa=3 f y (2L — ¢7) [(2 — 0) ¢~ -+ 205.] dZdr, (18)

0 0 cy>0
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where @ =¢/w, (p>= j‘e";z(pd;‘.

The left-hand part of the equality is a positively determined quantity, since <¢Z{9I> << 0 [10]. There-
fore, with =0, the functions ¢=0. In addition, by virtue of (18) and of the inequality
pZ el > wi(e? , ny=const >0, {19)
valid for "rigid" potentials [10], we obtain

x
X

Ve dy<
0

ot
WD+ 1y {20}
Thus, for the moments of time 7~ 1, slip (with an accuracy up to quantities on the order of g) is ab-
sent, while, in the range 73 1, it corresponds to the hydrodynamic solution of the problem.

As a second example, let us consider the problem of unsteady-state thermal slip, formulated in [16]:

B Ta(t - ) = 2 Ik 21)

@y, t=0)=0,L:Tw; @(y=0, t. ¢, 0)=(1 — 0)g(c, < 0). (22)

Here Ty is the gradient of the temperature in the direction x, "included" in the moment of time t=0,
and, with t>0, maintained constant in value, both in the volume of the gas (y>0) and along the plane (y=0);
Ty = ToHdT/dx); £4 ¢4 Tx is an Enske function [10].

It can be seen that, for the function § = p=¢4Tx @y, Eq. (21) and conditions (22) coincide with the cor-
responding relationships of the Rayleigh problem, if, in the boundary condition (2), the "source" 2¢¢, W is
replaced by the "sink" g¢y Txcpt Therefore, the preceding conclusions, obtained on the basis of relatlon-
ships (18)-(20), are valid also for thermal shp with small values of the parameter 5. To determine the
function U(t, y) in this case we must find the solution of the hydrodynamic equations (14) with the boundary
condition with y =0, obtained, as in a number of articles, on the basis of solution of the steady-state variant
of Eq. (1) in a Knudsen layer [16-18];

i Al (1, y = 0)

Ut,y=0)= oy + ﬂTlTx,

where n;, nT are the coefficients of isothermal and thermal slip (of order 1); I is the length of the free-
flight path.

Analogously to relationship (16) we obtain

Sy Y__'L+L)wﬁ;’W
U(t,Y)fnTYX}\erf(:(“/%) exp(qi‘ T\%‘er( TG )f

Al

J

(8

From this, taking into account that, with o— 0, N & nlg=0) [16-18], ;= (2/0)Vr/ 2 [19], we will have

“ e\p( )erfc '\] 1_;%)4

If the moment of time T is given and ¢— 0, then, by virtue of (23), U ~ o V1—0.

U = 7]17.v (23)

If the value of ¢ is given and 7—=0, then U ~ 1 — V;_-» 1.
[ 2 4

Thus, steady-state thermal slip at a mirror wall (c—0) [16-18] should be understood as the limiting flow
attainable with 7— o, g— 0 [16].

The author thanks V. V. Strumingskii, V. N. Zhigulev, and V. P. Shidlovskii for their evaluation of the
work. :
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MOTION OF AN ELECTROLYTE —GAS INTERFACE
IN AN ELECTRICAL FIELD

V. P. Blinov and Yu. V. Zhilin UDC 537.84

The article discusses the phenomenon of the motion of an electrolyte—gas interface, first
observed on electrical levels. It gives a comparative characterization of the phenomena,
for purposes of practical use, with a solution of problems of control by the position of a
liguid—1liquid interface.

While the mechanics of a liquid has been rather well studied at the present time, the problem of ef-
fective control by the position of a liquid has not yet been solved. It is a question here not of mechanical
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